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ABSTRACT 

Cost-effective test and block numbers for tree progeny testing using randomized complete block designs (RCB) 
with single-tree plots were investigated through a generalization of the relationships between progeny testing 
quality criteria and test design parameters. Optimal test and block numbers were defined as those that achieve 
an adequate level of testing quality using the minimum resources. Results indicated that the desirable test and 
block numbers were functions of the target quality criteria, genetic architecture of a character and costs 
associated with each additional test site. A trait with low heritability and strong G x E interaction generally 
required a larger number of test sites than one with high heritability and weak G x E interaction to reach the same 
level of testing quality. Higher cost for each additional site favored using fewer test sites and more blocks per 
site. A testing quality standard higher than 90 % in the reliability of breeding value prediction consumed 
substantially more resources than one of 75-85 %. Desirable test and block numbers were provided to satisfy 
different progeny testing quality requirements under various scenarios of genetic architecture of a trait and the 
cost associated with each additional site. 
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INTRODUCTION 

Progeny testing is an essential component of a tree 
improvement program. Major goals of progeny tests 
are to estimate genetic parameters and rank genotypes 
(parents and offspring) for selection (LIBBY 1973; 
WHITE 1987; WHITE & HODGE 1989; HUBER et al. 
1992; WHITE et al. 1993; WHITE 1996). Progeny tests 
are, however, costly to establish, maintain andmeasure, 
which often constitute a prominent proportion of a tree 
improvement budget (WHITE et al. 1993, 1999). 
Optimal field test designs are required to allocate 
reasonable resources to achieve adequate progeny 
testing quality while avoiding excessive investment. 

A number of studies have been carried out to 
determine the optimal numbers of test sites andor 
offspring per genetic entry per site. ROBERTSON (1957) 
studied the optimum family size in a single test based 
on a complete random (CR) design with the constraint 
of fixed total test units. COTTERILL and JAMES (1984) 
investigated the optimal number of offspring needed to 
detect certain levels of difference among family means 
at a single site. Because a tree improvement program is 

usually implemented in a relatively large breeding zone, 
in which varying environmental conditions are ex- 
pected, multi-site tests are therefore necessary to 
provide information on genotype x environment (G x 
E) interactions (JOHNSON & BURDON 1990; CARSON 
199 1 ; HUBER et al. 1992; DIETERS et al. 1995; WHITE 
1996; JOHNSON 1997; POWARAYI et al. 1997). 

For multi-site solutions, DICKERSON (1962) and 
WRIGHT (1976) investigated the effects of test numbers 
on the efficiency of selection response under a con- 
straint of fixed number of test units. HUBER et al. 
(1992) studied the efficiency of test numbers on the 
estimation of G x E interactions. LINDGREN (1985) 
further attempted to search for the cost-efficient num- 
bers of progeny tests for ranking genetic entries by 
integrating economic constraints, such as extra costs 
associated with an additional test site. Although results 
from these studies may be optimal from the perspec- 
tives of statistical or economic efficiencies under the 
imposed constraints, they did not give sufficient consid- 
eration of progeny testing quality. Results are some- 
times difficult to apply to tree improvement operations 
because some of the "optimal solutions" become less 
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biologically or practically meaningful. For instance, 
with DICKERSON (1962) and WRIGHT (1976)'s ap- 
proach, the highest efficiency of selection response 
would be achieved by using the fewest replications per 
test (LINDGREN 1985) or a single site because selection 
efficiency monotonically decreases as the number of 
test unit increases. Under certain levels of economic 
constraints and variance structures, LINDGREN'S (1985) 
cost-efficient optimum solution also resulted in a single 
test site, which would not allow for the partitioning of 
additive genetic variance from that of G x E interac- 
tion. From an operational perspective, WHITE and 
HODGE (1 992) searched for the necessary test numbers 
by examining the effects of a range of test sites on the 
precision of breeding value prediction (i-e., Corr(g,g) ) 
using empirical tree improvement data with a RCB 
design, 4 blocks and 5-tree plots. Their study empha- 
sized the minimum resources required to maintain an 
adequate progeny testing quality. 

Recent studies in experimental designs have sug- 
gested that a RCB design using single-tree plots is 
more statistically efficient in tree progeny test (Loo- 
DINKINS & TAUER 1987; LOO-DINKINS et al. 1990; 
WHITE 1996). Moreover, different traits andlor species 
may have different genetic architectures and G x E 
interactions to be considered in progeny testing de- 
signs, especially at the early stages of tree improve- 
ment. In this study, we extended the concept of WHITE 
and HODGE (1992) with a generalized approach that 
incorporated many possible progeny test scenarios in 
determining desirable test and block numbers. We 
attempted to search for the minimum progeny test and 
block numbers to ensure an adequate progeny testing 
quality using a RCB design with single-tree plots. 

METHODS 
Main assumptions 
In contrast to an assumption of fixed number of test 
units in some of the previous studies, it was assumed 
that resources were not limited to achieve a certain 
level of progeny testing quality. Therefore, necessary 
progeny testing quality was not sacrificed for unneces- 
sarily lower cost or higher statistical efficiency, be- 
cause higher statistical or economic efficiencies did not 
necessarily assure an acceptable progeny testing 
quality. For many operational tree improvement pro- 
grams, such an assumption would be reasonable 
because acceptable quality often takes priority to a 
lower cost. A constraint on fixed test units was im- 
posed in previous studies to search for a relative 
maximum (or minimum) with a monotonically increas- 
ing (or decreasing) asymptotic function, which would, 
otherwise, exist only at the boundaries of their do- 

mains. Optimal solutions from such approaches were, 
therefore, likely to be functions of the test units as- 
sumed. 

In the current study, it was attempted to search for 
the test and block numbers that accomplish a predeter- 
mined testing quality using the fewest resources possi- 
ble. Different scenarios of genetic architectures (i.e., h2, 
r,) of a trait and cost penalties for each additional site 
were taken into consideration. While the experimental 
design was based on RCB with single-tree plots, the 
results were easily extendable to complete random (CR) 
or RCB design using plots as experimental units, such 
as in plant breeding. 

Progeny testing quality criteria 
1) Precision in breeding value prediction 

An essential goal of progeny testing is to rank geno- 
types based on predicted breeding values (BVs) (WHITE 
& HODGE 1989; WHITE et al. 1993). Prediction error 
variance is larger for predicted BVs when genotypes are 
poorly tested (WHITE & HODGE 1989; HUBER 1993; 
MRODE 1996; HODGE 1997), which means that a 
relatively genetically inferior genotype could be ranked 
higher, resulting in potential wrong decisions in selec- 
tion. Thus, a certain level of breeding value prediction 
precision is necessary to reduce uncertainties in geno- 
type ranking and selection (WHITE et al. 1993; WHITE 
1 996). 

For genetically unrelated parents, it can be shown 
that the precision of breeding value prediction (i.e., 
Corr(g,g)) is equivalent to the square-root of the 
parental heritability (e.g., family heritability for half- 
sibs) (WHITE& HODGE 1989; MRODE 1996). Therefore, 
a multi-site family heritability for half-sib families and 
its sampling variances are appropriate criteria to evalu- 
ate the quality of breeding value prediction. 

2) Sampling variances of genetic parameter estimates 

A unique purpose of multi-site progeny testing is to 
estimate G x E interaction. Partitioning G x E variance 
from additive genetic variance is critical for unbiased 
estimation of heritability (HUBER et al. 1992; WHITE 
1996; LU et al. 1999), which, in turn, affects the 
estimation accuracy of responses from selections 
(FALCONER 198 1 ; WHITE 1996). Thus, sampling 
variances of the estimates of G x E variance compo- 
nents and heritability are appropriate indicators. 

Generalization of relationships for multi-site half- 
sib progeny tests 
Assuming that (f) genetically unrelated half-sib families 
are tested over (t) site using a RCB design and single- 



tree plots with (n) blocks per site, if approximate , 1977) for the character of interest, it can be shown (see 
information is available about individual heritability , Appendix 1-3) that there exist the following relation- 
( h f )  and type-B genetic correlation (r,) (BURDON ships: 

1) Multi-site family heritability: 

2) Sampling variance of variance component for G x E interaction: 

1 -- 
2 

Var(o,) = - 
n 2  - ( t -  l)(f-1) + 2  t(n - l)(f- 1) + 2  

where, f is the number of half-sib families tested across t sites, oiis the total phenotypic variance (see Appendix 

3) Approximate sampling variance of hf2 : 

2 Eq. 3 implies that: lim 

4) Approximate sampling variance for estimates of hf : 

Eq. 1 ,2 ,3  & 5 are functions of test design parameters. errors of heritability estimates can only be further 
Once hz and r, are estimated, it is simple to estimate lowered through using more genetic entries in a prog- 
the sampling variances of heritability estimates. Eq. 4 eny test. 
& 6 further indicate that the lower limits for sampling 

2 32 Var(hi ) =: - 
w2 
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Economic considerations 
LINDGREN (1 985) indicated the necessity of considering 
economic factors in determining the optimal number of 
test sites. The argument was that more costs would 
accrue for each additional test site. Thus, using more 
test sites and fewer blocks per site may not necessarily 
be economically efficient. 

It is reasonable to assume that a part of progeny 
testing costs are linearly related to the total number of 
progeny per genetic entry, while the other part is a 
function of the number of test sites (LINDGREN 1985). 
If the cost for using each additional site is expressed as 
an undetermined proportion (P %) of the costs had one 
site been used, the total costs for testing each genetic 
entry over t sites can be expressed as: 

Cost = tn + tn*p(t - 1) = tn[l +p(t - l)] [71 

and a relative efficiency for the increase in per cost unit 
can be expressed as: 

2 

E = L =  h: 181 
cost tn[ l+p(t-I)]  

where, t and n are, again, the numbers of test sites and 
blocks per site. 

Because test designs with different block numbers 
at each site will need different numbers of sites to reach 
the same level of h;, Eq. 8 can provide an assessment 
for their relative economic advantages under different 
P values. 

Optimal numbers of tests and blocks 
Optimal numbers of test sites and blocks per site were 
defined as the numbers that result in the minimum cost 
to achieve an adequate level of progeny testing quality. 
This excluded, however, scenarios that are purely 
statistically or economically optimal but unable to 
produce acceptable progeny testing quality. For exam- 
ple, test designs using a single-site were not considered 
optimal for reasons discussed above. Evident1 from 

2 r Eq. 1-5, hfz is larger and var(ofe), var(hf ) and 
var(hf) are smaller as t and n increase. There is no 
straightforward mathematical approach to derive the 
optimal t and n from the above monotonically increas- 
ing or decreasing asymptotic functions because the 
relative maximum or minimum only occurs at the 
boundaries of the domains. One approach was to 
computationally compare a range of t and n combina- 
tions for their costs to achieve a given level of progeny 

2 2 
test quality criteria (i. e., hf , var(of,), var(h:) and 

2 
var(hi ) )  under different scenarios of genetic architec- 
tures (hz and r,) and economic penalties (P %). A 
second approach was to firstly find the most efficient 
block numbers (n) per site for a reasonable progeny test 

2 2 2 2 
target quality (i.e., hf var(ofe), var(hf) and var(h, )) 
based on economic analyses, and then reverse Eq. 1 to 
calculate the test site numbers as: 

The former approach was used in this study to search 
for the desirable test and block numbers for a predeter- 
mined level of progeny testing quality in Table 1. 

RESULTS 
Effects oft and n on h; 
The effects of test and block numbers on the estimates 
of h: are shown in Fig. 1 based on Eq. 1. To reach a 

2 
certain level of hf , different numbers of test site were 
needed for designs using different block numbers per 
site. The more blocks per site, the fewer tests needed, 

2 and vice versa. The increase of hf , however, became 
flat for all block numbers when the test numbers were 
large. Although using more blocks per site could reduce 
the number of test sites required, the efficiency was 
substantially lowered, especially when block numbers 

2 
exceeded 20. For instance, hf increased more from 5 to 
10 blocks per site than from 10 to 20 blocks per site, 
and using 30 blocks per site showed very limited 

2 
increase inhf over 20 blocks per site given the same 
number of test sites (Fig. 1). 

The number of sites needed to reach a certain value 
of h; was also strongly affected by the genetic archi- 
tectures of the trait of interest. When heritability was 
low and G x E interaction was strong, more tests were 
needed to achieve an adequate precision in breeding 
value prediction. For example, for a constant 20 blocks 
per site, 11  tests would be necessary to achieve BV 

2 2 prediction precision of 0.90 (i.e., hf = 0.81) if hi = 
0.1 and r, = 0.6. This number could, however, be 

2 
reduced to 8 tests if when hi = 0.1 and r, = 0.9, or 3 
tests if hz = 0.3 and r, = 0.9. 

Effects oft  and n on sampling variances of G x E 
variance 
The relative importance of sampling errors of G x E 

2 2 2 
variances (i. e., s.e.[ofe] ) was expressed as s.e. [ofell?, 
assuming the total phenotypic variance being 1.0 after 
data standardization (Fig. 2). This expression was more 



0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 

Number of tests Number of tests Number of tests 

Figure 1. Effects of test and block numbers on the estimates of family heritability under varying genetic architectures (h iand  
2 2 2  r,) and arbitrary metric trait. Note, r,=ofl(of+ofi). 

2 
meaningful than s.e.[ofe] itself because it eliminated the 
scale effects and could show the degrees that the 

2 
Sam ling errors of of, might complicate the estimates P of of and r,, since the estimation of the latter depends 

2 
on the precision of o/, under the traditional ANOVA 
approach (SEARLE et al. 1992). Fig. 2 shows that the 

2 
sampling error of ofe could be reduced as the number 

of test increases. The reduction, however, became very 
limited after approximately 5 tests for test designs with 
different numbers of blocks per site. It was noted that 

2 2 
the magnitudes and patterns of s.e.[ofe]/of were very 
similar between n = 20 and n = 30, suggesting, again, 
that more than 20 blocks per site would do little to 
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Table 1. Desirable test (t) and blocWreplication (n) numbers for a RCB design with single-tree plots to achieve a level 
of precision in breeding value prediction under different cost levels for each additional test site. 

Genetic Cost factor (P) 
architecture Target 

P = 0.05 P = 0.15 P = 0.25 P = 0.35 

h' 
h; 

t n t n t n t n 

6 Note, BURDON'S type-B genetic correlation is expressed as: r,=-. 
2 2 
Of + Ofe? 



0 2 4 6 8 10 12 14 16 18 20 

Number of test 

Ef[ects of test and block numbers on the sampling 

improve the precision of variance component estima- 
tion. 

Similar to the estimates of hfZ, genetic architectures 
of traits under consideration affected the number tests 

2 2 needed to reduce the ratio of s.e.[ofe]lof at a certain 
degree. Only 3 tests were required to control the ratio 

2 under 0.1 when hi = 0.3 and r, = 0.8, as compared 
with 11 tests when hz = 0.1 and r, = 0.6 (Fig. 2). 

Effects oft and n on sampling variances of h i  and h; 

Fig.3 shows the effects of test and block numbers on 
the sampling errors of family and individual heritability 
estimates based on Eq. 3 & 5, expressed as the propor- 

2 2 
tion of standard error relative to the h, or hf estimates 
(i. e., S.E. [ h:]lh: * 100%). The genetic entries used in 
the calculation were 100 half-sib families, which was 
a fairly common number in tree progeny trials using 
single-tree plots (WHITE 1996). Evidently, the precision 
of heritability estimation was a concern because 

2 s.e.[h:] and s.e.[hi ] could account for quite large a 
proportion of the estimates when test numbers were too 

2 few. For example, when hi = 0.1 and r, = 0.60, 
s.e.[l$] and s.e.[hz] could account for 30 % to 100 % 
of their respective estimates when 2 sites were used, 
depending on the number of blocks per site, which 
varied between 5 and 30 in this calculation. To control 
s.E.[~:] and S.E.[ hfZ] under 20 % relative to their 
estimates, at least 5 sites were required for traits with 
low heritability or strong G x E interaction (Fig. 3). 
Interestingly, it was shown (A pendix 4) that 

2 2 2 2 ! 2 s.e.[h, ]/hf = s.e.[hi ]/hi = s.e.[o,]lof, which indi- 
cated that the relative precision of her~tability estima- 
tion was almost entirely determined by the precision of 
additive genetic variance estimation. 

Number of test 

variances of G x E interaction expressed as: s.e.(c$)/$. Note, 

Relative economic efficiency 

To reach a given level of family heritability, different 
numbers of total test units were required for designs 
using different numbers of blocks per site (Fig. 1). For 

2 
example, to achieve h, = 0.80, approximately 90, 1 10, 
150 and 195 test units were required for n = 5, 10, 20 
and 30, respectively, which involved approximately 19, 
11, 8 and 7 test sites. If no extra cost were to incur for 
an additional test site (P = 0 %), the test design with the 
fewest blocks per site would win. The pattern was, 
however, changed considerably when 10% or more of 
the total costs were added for each additional test site 
being included (Fig. 4 1-111). Economic efficiency for 
30 blocks per site was, however, close to that of 20 
blocks for P values ranging from 10 % to 30 %. Eco- 
nomic efficiencies for using fewer blocks per site were 
compromised by the extra cost associated with an 
additional site. Economic efficiencies were also lower 
for using more blocks per site because the improvement 
in progeny test quality became minor when block 
number were too large. The relative efficiency steadily 
decreased as the total number of test units increased, 
either through more test sites or blocks per site (Fig. 4 
IV). 

Desirable test and block numbers 
Table 1 provides some desirable test and block num- 
bers that have higher economic efficiencies under 
different scenarios of biological and economic consid- 
erations and quality requirements. These numbers were 
obtained through the comparisons on the relative 
efficiencies (i.e., Eq. 8) for a range of possible combi- 
nations of test and block numbers under different 
genetic architectures of a trait and the economic penal- 
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Number of test Number of test 
Figure 3. Effects of test and block numbers of progeny test design on the precision of heritability estimates as expressed in the 

2 2 form : s.e.(hx)lhx * 100%. Note, r , = ~ ; / ( o ; + ~ ; ~ ) .  

mates of individual heritability and type-B genetic 
correlation (BURDON 1977) become available. 

The monotonically increasing asymptotic curves of 
progeny testing quality criteria as functions of test and 
block numbers (Fig. 1) indicated that the most statisti- 
cally or economically efficient solutions may not be 
biologically optimal. Because the highest statistical or 
economic efficiencies were achieved through using the 
fewest test sites orland blocks per test (LINDGREN 
1985; HUBER et al. 1992) and selection efficiency 
monotonically decreased as the number of test unit 
increased (Fig. 4), they were unlikely to yield accept- 
able precision in breeding value prediction and genetic 
parameter estimation (Fig. 1-3). Therefore, it only 
became meaningful to seek higher statistical efficiency 
after ensuring an adequate progeny testing quality. 
Optimal test and block numbers could, therefore, be 
more appropriately defined as the minimum resources 
necessary to achieve a target progeny testing quality. 
Genetic architectures of a trait of interest considerably 

ties for using an additional test site. Although these 
selected numbers might not have the globally highest 
statistical or economical efficiency, they ensured a 
certain level of progeny testing quality with the possi- 
bly lowest costs. 

DISCUSSION 

The established relationships between progeny test 
design parameters (i.e., test site and block numbers) 
and progeny testing quality criteria have provided a 
convenient display of the changes of progeny testing 
quality over a range of test design scenarios. Tree 
improvement practitioners can use these equations to 
produce the graphic curves to predict the anticipated 
progeny testing quality for a chosen test design. The 
by-products from this study were the approximate 
sampling variances for some key genetic parameter 
estimates which can be easily calculated when esti- 



Family heritability (h:) 

0.5 0.6 0.7 0.8 0.9 

Family heritability (h:) 

Figure 4. Relationship between cost unit and family heritability for different numbers of blocks per site under the assumption 
of varying extra cost for each additional site to be used (1-111) and the relative efficiency in increasing family heritability with 

2 2 2 increasing test units (IV). Note, r,=o,l(of +ofe). 

influenced the number of test needed to achieve the 
quality goals. Lower heritability and stronger G x E 
interaction generally required more test sites than 
higher heritability and weaker G x E interaction. But, 
relatively speaking, heritability was more influential 
than G x E interaction (Fig. 1-3). For example, for the 
same levels of G x E interaction (r ,  = 0.75) and block 
number (n = 20), only 5 tests were required to reach a 

2 2 
level of lzf = 0.80 when hi = 0.2, in contrast to 9 tests 
if hf = 0.1 (Fig. 1). Implications to tree breeding were 
that it may be more beneficial to have fewer, but well- 
established and intensively maintained progeny tests to 

achieve higher heritability by creating more homoge- 
neous environmental conditions than have more exten- 
sively managed progeny tests of low heritability due to 
environmental noises. For the same levels of heritabili- 
ty and target progeny testing quality, it seemed more 
desirable to use more tests and fewer blocks per test to 
achieve higher economic efficiency for a trait showing 
strong G x E interaction. Weak G x E interaction, on 
the other hand, favored using fewer tests and more 
blocks per test (Table 1). 

Statistical efficiency was higher for test designs 
with smaller number of blocks per site and larger 
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number of test sites for a fixed number of test units. 
Extra costs incurring to each additional test, however, 
quickly reversed such trends when P % = 10 % or 
larger (Fig. 4). Larger P % values favored using more 
blocks per sites and fewer test sites. Large number of 
blocks per site could not, however, steadily increase 
progeny testing quality. The improvement in progeny 
testing quality was substantially reduced when block 
number exceeded 20 (Fig. 1-3), although 30-40 blocks 
per site could still be as economically efficient as 20 
blocks per site if P % was large (Fig. 4). Also, a target 
progeny test quality should not be set too high, substan- 
tially more test units and costs were required to achieve 
h j  higher than 0.8 for a trait with hf around 0.1 and 
0.85 for h.* = 0.2 (Table 1, Fig. 4), because the sur- 

i faces of hf became very flat thereafter. Therefore, 0.80 
for the reliability of breeding value prediction (i.e., 
Cor(g,g)=0.90) seemed to be an upper limit for most 
scenarios of tree progeny testing. 

Desirable test and block numbers should simulta- 
neously satisfy the precision in breeding value predic- 
tion and the estimation of genetic parameters. The 
probability was high that the recommended numbers in 
Table 1 could produce such desirable results with the 
lowest costs possible under different progeny test 
scenarios. Other combinations of test and block num- 
bers were also possible with only slightly lower eco- 
nomic efficiencies. For example, appropriate test 
numbers could be calculated using Eq. 9 or from the 
hf surfaces in Fig. 1 when the target testing quality and 
blocks per site were chosen. But, more than 40 blocks 
per site seemed to be excessive. 

In operational tree improvement practices of major 
commercial species, varying numbers of progeny test 
sites and blocks per site were used to evaluate genetic 
entries, ranging from as few as 2 test sites (JOYCE & 
NITSCHE 1993) to as many as 10 to 14 tests (CARSON 
1991; WHITE et al. 1993, 1999; JOHNSON 1997). 
Empirical data also seemed to suggest different optimal 
test numbers. For example, CARSON (1 99 1 ) suggested 
that 2, 3, or 4 best tests could achieve 95 % of possible 
gain from a total of 11 tests in a progeny testing of 
Pinus radiata in New Zealand, in which 120 half-sib 
progeny of a parent were tested per site. WHITE and 
HODGE (1992), however, indicated that, to achieve 95 
% of maximum gain, at least 6 progeny, tests are neces- 
sary for height growth which had low heritability and 
appreciable G x E interaction ( r ,  = 0.6-0.7) with 20 
progeny per family per site. The discrepancies between 
these empirical studies were apparently attributable to 
the different settings of the specific tests, such as the 
number of progeny per family per site. Those empiri- 
cally optimal test numbers were, however, predictable 
fromEq. 9 with the input of the specific test conditions. 
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Appendix 1. Multi-site family heritability estimation with half-sib families and RCB design using single-tree 
plots 

Analytical linear model: yo, = p + si + bj(i. + fk + feik + e..  
v k  

where: 

Thus, 

y, is the observation of the kth family in the jLh block of the iLh site; 

p is overall mean; 

si is fixed effect of the iLh site; 

bj,, is the fixed effect of the j"' block within the ith site; 

f, is the random effect of the kLh family, ~,-NID(O,~;) ; 

fe, is the random effect of interaction between the iLh site and the kLh family, f e , k - ~ ~ ~ ( ~ , o ~ e )  ; 

e ,  is the residual effect; e . .k -~~~(~ ,o : )  ; 
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By BURDON (1977) the type B genetic correlation is: 

2 

From A1.3, - 1 - - I + %  
r~ 2 

Of 

So 0 , - 4  1 
- (by substitution) 

2 2 
0, hi "B 

For a single site, where t = 1 and r, =1, Eq. A1.4 reduces to 

[A. 1.31 

which is identical to that of ROBERTSON (1957). When only one block is used at each site, where n = 1, Eq. 1 
reduces to 

Eq. A1.6 is in the same form as Eq. A1.5 if n replaces t, suggesting that multi-site progeny test over t sites with a 
single block per site is equivalent to a single-site test with t blocks. It is noted that a differing relationship from Eq. 
A 1.5 between family heritability and individual heritability at a single site is given by FALCONER (198 1, Chapter 
13, Eq. 13.4) as: 



2  2  2  2  where, t =oBloT, r = 1/4, and a, and a,  are between family variance component and total phenotypic variance. The 
difference between Eq. A1.5 and Eq. A1.7 is that Eq. A1.5 is a traditional approach used in forest genetics data 
analysis with the assumption of large sample sizes, while Eq. A1.7 applies to both small and large sample sizes. 

Appendix 2. Sampling variance of variance component for genotype x environment (G x E) interaction with 
half-sib families and RCB design of single-tree plots. 

2  2 2 2  Let a, = of + a,., + a, 

2  40: Then hi = - 
2 ' 

2  2  2  

Since Of - h i  0, 
r~=2- 2  2  

a + 0 hi OI) + 40; 

2  hZ 2  
and of = - 5, 

4 

From expected mean squares (EMS), it is known that 

2 2  2  MSf, = a, + n of, and MSe = a, 

2  2 2  2 2  2  2  2  From A2.1 of -nafe+afe+naf,+a, = of - ( n - l ) o , + M S f ,  = a, 

According to DIETERS et al. (1995b), 

n 2  I ( t -  l ) V -  1)+2 t ( n - l ) v - l ) + 2  J 
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Appendix 3. Sampling variance of family heritability with half-sib families and RCB design of single-tree 
plots. 

From expected mean square (EMS), it is known that 

2 2 2 2 2 MS, = o, +no/,+tnof and MS,, = o, + nq ,  

(by substituting of o i  and $from Appendix 2) 

According to DIETERS et al. (1995b), 

Cf- 1 )  + 2  ( t - l ) ( f -  l ) + 2  

2 
2 

Because h, = Of , let 
2 2  2 of + ojdt + o,lt n 

2 2 2 
(by substituting of a/, , of and o, from Appendix 2). 

According to DICKERSON (1969) and DIETERS et al. (1995b), an approximate estimate of variance of the ratio 
cx,/x, is: 



(j- 1) + 2  ( t - 1 ) V - l ) + 2  j 

I (j- 1) + 2  ( t -  1)Cf- 1 ) + 2  

Appendix 4. The relationship between the relative sampling errors of heritability estimates. 

From Appendix 3, 
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2 ( Oil 16 a )  do2 Similarly, Var(h, ) = Var 4- = I?. = f 
( cJ f )2  ' 

2 
(JP 

2 2 2 2 
. e . [ a , ]  v - J(VU~(O>)  - s.r.[o,.l - S . ~ . [ / I ~ I  

Thus, - = - -  
2 2 2 2 2 hi ( J  P 

Of Of h; 


