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ABSTRACT 

Selection index gives optimal index weights and maximises expected genetic gain when variance-covariance 
parameters are known exactly. However, in practice this is seldom the case; the parameters must be estimated. 
The present study was conducted to overcomethe effects of sampling errors on selection efficiency. A method 
is proposed which consists of 'regressing' the estimated (least-squares) selection index coefficients ( 6 )  towards 
the relative economic values (a), which are assumed to be known precisely, as: 6' = 6 k + a  (I-k), for 0 < k 
1. The efficiency of proposed method along with some other index selection procedures (like unmodified index 
selection, base index and "bending" method ) was evaluated for 192 parameter and sample situations with 1000 
replicates each, by Monte Carlo simulation. The highest gain was associated with k < 1. The mean improvement 
in % gain obtainable when k < 1 (over k = 1) was 40.4, 17.7, 6.7 and 2.3 for sample size of 25, 50, 100 and 200 
families, respectively. The optimum k-value increased with increase in sample size but decreased as the number 
of traits in the index increased. The relative efficiency of the proposed method was higher as compared to other 
procedures. When the heritabilities of index-traits were low and their relative economic values were in opposite 
order to heritability, the relative efficiency of the proposed method was much higher 

Key words: sampling error, selection index, economic weights, index weights, efficiency. 

INTRODUCTION 

The theoretical basis of index selection was developed 
by SMITH (1936) and HAZEL (1943), and involves the 
indirect selection of an unobserved variable, H, by 
truncation selection of an observed variable, I, which is 
jointly distributed with H. The index (I) is a linear 
function of observations, which aims at ranking the 
population for aggregate genotype, i.e., H (KEMPT- 
HORNE 1957, FALCONER 1989). Index weights can in 
principle be found by using a least-squares solution to 
minimiseprediction error, or equivalently maximise the 
product-moment correlation between index values and 
aggregate genotype. 

An index I = b 'X , where Xis a vector of phenotypic 
deviates from fixed constants (for example, site means) 
that are assumed to be known, on p traits, is generally 
used in order to maximise the correlation with overall 
aggregate genotype H = a'g , where a is a vector of 
known economic weights andg is vector of true breed- 
ing values on the samep traits. SupposeP = var (X) and 
G = var (g) are the phenotypic and genetic covariance 

matrices, respectively, the optimum index is given by 

The expected response per generation to selection is: 

where i is the selection intensity. By using estimates of 
P and G, namely Fand 6,  the estimated index weights 
are: 

and predicted genetic response is 
1 

a = i(g$g)? [41 

The derivation of the selection index is based on the 
assumption that the population parameters such as 
heritability (h2), genetic and phenotypic correlations, 
phenotypic standard deviations or alternatively genetic 
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and phenotypic variance-covariance matrices, are 
known exactly. In practice, however, only estimates of 
these parameters are usually available for constructing 
the index, and such an index is less efficient than one 
computed from the true parameters. The effects of 
errors in the parameter estimates and the loss in effi- 
ciency, in relation to size of the sample used for estima- 
tion, have been considered by WILLIAMS (1962a, b), 
HARRIS (1964), and SALES & HILL (1976a, b). With 
multi-trait indices, it appears that rankings on index 
values will be more sensitive to errors in estimating 
genetic and phenotypic covariance matrices if the traits 
in the index are adversely correlated than if they are 
favourably correlated (BULMER 1985). 

HAYES & HILL (1981) proposed a technique called 
'bending' for modifying parameter estimates for multi- 
trait individual selection. If phenotypic (P) and genetic 
(G) variance- covariance matrices are estimated from 
between- and within-class covariance matrices, B and 
W respectively, in a one-way multivariate analysis of 
variance, then according to the method the bent genetic 
and phenotypic covariance matrices, 6* and $* are 

where: B * = (1 - y) B + V y W,  where yis the 'bending' 
factor andv denotes the average root of w -'B . For y 

, . * - I  * * A - 1  ,. 
= 0 , P  G =P G or 6 * = 6 ;  and for y = 1, 

* - I  * * 
P G =I or 6 * = a .  HAYES & HILL (1981) propose 

,. -1 * 
two alternative procedures: (i) if any roots of P G are 
negative, bend until the smallest root is zero; (ii) bend 
on the basis of the sample size alone. 

ARNASON (1982) used 'bending' to predict the 
breeding values for multiple traits in small, non- 
random-mating (horse) population. MEYER & HILL 
(1983) extended this bending procedure to the case 
when both individual and sib-information are available, 
allowing also for different subsets of traits being 
represented as characters in the selection criteria (in the 
index) and traits in the (economic) aggregate genotype, 
respectively. MEuw1SsEN & KANIS (1988) used a 
bending procedure to make an inconsistent set of 
contrived population parameters (taken from several 
sources) consistent. A 'rounding procedure' was 
proposed by TAI (1989) to improve the efficiency of 
index selection, which involves performing canonical 
variate analysis on phenotypic and genetic variances of 
a group of traits estimated from a progeny test experi- 
ment. 

The ridge regression technique (HOERLE & KEN- 
NARD 1970) was devised to circumvent the problem of 

an ill-conditioned covariance matrix of independent 
variables in multiple regression analysis, and has been 
used to develop a ridge selection index (SAXTON 1986, 
XU & MUIR 1989, VERRYN 1994). Using this proce- 
dure, the modified index weights can also be calculated 
as 

SAXTON (1986) applies "ridge regression" and "bend- 
ing" to prediction in breeding. Bending performed 
better than the ridge procedures, and ridge procedures 
performed better than least-squares (LS) selection index 
(SAXTON 1986). 

To circumvent the problem of choosing an optimal 
bending factor for a given sample situation, E s s ~  
(1991) proposed the use of prior knowledge of the 
genetic parameters. Also, he suggested to use that 
bending factor which maximises the correlation be- 
tween true and estimated aggregate genotype as 

The vector of modified index weights, 6 * , is obtained 
by bending B towards Was  suggested by HAYES and 
HILL (1981). Because the G matrix is unknown, he 
suggested to use its prior estimate. This new bending 
strategy of ESSL (1991) was found to be better than 
those two suggestions of HAYES and HILL (1981) while 
dealing with a given sample situation. 

An alternative viewpoint, proposed in this paper is 
to give more weight to the economic information when 
there is doubt about the accuracy of the estimates of 
genetic parameters. The extreme approach is to use a so 
called 'base index' (WILLIAMS 1962a, b). An appar- 
ently unexplored refinement of this procedure is to 
regress the computed index towards the base index. The 
present study was aimed at deriving satisfactory index 
weights assuming good economic information. The 
efficiency of the proposed method was compared with 
the bending approaches of HAYES & HILL (1981) 
through Monte Carlo simulation. 

MATERIALS AND METHODS 

There is assumed to be a one-way classification with f 
groups or half-sib families each of size n, and p traits 
are recorded on each individual. It is further assumed 
that the observations are multivariate normally distrib- 
uted with among- and within-group effects independent 
of each other. The multivariate analysis of variance 
table, in the notation of HAYES & HILL (1981), is as 



follows: 

Source df S S M S EWS) 

Among groups f-1 SB B C + n Y  
Within groups f (11-1) S,,, W 2 

The matrices of sums of squares and cross-products 
follow independent central Wishart distributions, S ,  - 
W, [(f - I), C + n Y] and S,, - W, [f(n - I ) ,  21. An 
estimate of C is W, whereas the estimate of Y or 0.25G 
= (B - W)l n. The dimension of each matrix is p x p 
and W, signifies a Wishart distribution with p as 
number of variables. The matrix C is positive definite 
and Y is positive semi-definite. 

It is assumed that 'mass selection' is practised. The 
expectation of response that is actually achieved when 
6(equation 3) is used subsequently for making selec- 
tion decisions in the population is 

1 

" = i i l ~ a ( g l P g ) '  [ 51 

As the index coefficients in (3) are vulnerable to 
sampling errors in $and 6 , the expected gain values 
in (4 and 5) are themselves sensitive to these errors. 
The estimated index coefficients were regressed to- 
wards the relative economic values (REVs), assuming 
that the REVs are known precisely, as follows: 

where 6 * i s  the vector of modified index weights. 

Clearly, when k = 1, the selection is solely based on 
estimated LS index weights and when k = 0, the index 
is 'base index'. These modified index weights were 
used in place o f 6  in ( 5 )  to calculate the expected value 
of genetic response. In this way, some optimum value 
of k can be sought in order to maximise the value of 
expected gain. This strategy of finding the optimum k 
value is theoretically similar to that of finding opti~num 
y which maximises the correlation between true and 
aggregate genotype, proposed by E s s ~  (1991). The 
optimum value of k was considered to be that which 
gives the maximum average expected gcnctic gain (5). 

The true achievable genctic response by using the 
optimum index weights, b ( I ) ,  was calculated as 

R" = b 'Ga (b 'Z'b)-"' 171 

which is the maximum achievable gain from the known 
genetic and phenotypic covariance matrices. 

Simulation study 

Monte Carlo simulation was used to study the cffect of 
sampling errors on the selection index coefficients. In 
general, the environmental correlation was assumed to 
be zero but a few sets of parameters werc considered to 
study the cffect of non-zero environmental correlations. 
The number of traits simulated in the index were 2 , 3  or 
4. Different sets of economic weights were considered, 
i.e. equal, in same rank order as heritabilities and in 
opposite rank order to herilabilitics. The sampling 
intensity and the phenotypic variance of each trait were 

Table 1. Parameter sets (heritability, hZ, and genetic correlations, r,) used in simulation. Figure in parenthesis, if any, are 
the corresponding enviromental correlations 

'&, Ecanomic weights 

11 12 21 
11 12 21 
11 12 21 
11 12 21 
111 123 321 
111 123 321 
111 123 371 
111 123 321 

0 1111 1233 3211 
-.20 1111 1233 321 1 
-.20 1111 1233 321 1 
-.20 1111 1233 3211 

111 123 321 
111 123 321 

-.20 (-.01) 1111 2133 231 1 
- 08 (-.01) 11 l l 2133 231 1 
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assumed to be unity. Different sample sizes considered 
were 25,50, 100 and 200 half-sib families. The number 
of individuals per family was kept constant at 15. The 
sets of the assumed parameters used for simulation are 
given in Table 1. Some of these parameters are as used 
by ESSL (1991). 

The parameter sets where non-zero environmental 
correlations were assumed are also given in Table 1. 
The properties of these real (assumed) parameter 
matrices were examined in terms of their eigenvalues 
and all eigenvalues of these matrices were positive. The 
number of replicate simulation runs for each scenario 
was 1,000. For each replicate run, the among- and 
within-group matrices of sums of squares and cross- 
products (for varying sample sizes) were sampled 
independently from Wishart distributions. The genetic 
and phenotypic variance-covariance matrices were 
estimated from the sampled among- and within-group 
matrices of sums of squares and cross-products. 

Different index selection procedures compared for 
their efficiency were: 
1. k = 0 : Equivalent to the base index of WILLIAMS 

(1962a, b), 
2. k = 1 : Index based on unadjusted sample estimates, 
3. kR : Stepwise procedure by progressively regressing 

the estimated index coefficients towards REVs 
using (6), 

4. yR: Stepwise bending procedure by progressively 
bending B towards W (HAYES & HILL 1981). 

5. yN:  Bending procedure using fixed y values (sug- 
gestion (ii) of HAYES & HILL 1981). 

6. kN: regressing the estimated index coefficients 
towards REVs using fixed k values (based on 
sample size alone). 
For the procedure yR the optimum y value was 

chosen which maximises expression (5). This is theo- 
retically similar to the proposal of ESSL (1991) to use 
that bending factor which maximises correlation 
between the true and the estimated aggregate genotype. 
It is however different from the first suggestion of 
Hayes & Hill which states that if any roots o f 6  or 

* - I  A 

(P  G)are negative, bend until the smallest root is 
zero. The ridge index selection procedure was also 
evaluated but it was found to be consistently inferior 
and thus it will not be discussed further. 

For each sample run, the procedures, i.e. kR and yR 
were applied using the full range (0 to 1) of constants 
k and y with increment values of 0.01. The expected 
genetic gain (5) was calculated for each sample for 
different values of k and y. After that, these gain values 
were averaged over all samples (i.e. 1000). All of these 
comparisons were applied on the average values of (5). 
For the comparisons, i.e., kR and yR, the best 'fixed' 

value of k or y was considered to be that which maxi- 
mises average value of expression (5). The recom- 
mended yvalues of HAYES & HILL (1981) apply to the 
case of 16 individuals per family. Although the individ- 
uals per family were kept at 15 in this study the fixed y 
values from HAYES & HILL (1981) were used as such 
for calculations of procedure yN. The efficiency of all 
procedures investigated was judged by average ex- 
pected gain (5) relative to an index with true index 
weights (7). A computer program to generate Wishart 
distributions was written in SASAML (1989) using the 
algorithm of ODELL & FEIVESON (1966), as explained 
in KENNEDY & GENTLE (1980). 

RESULTS 

The results include replicates where estimated genetic 
correlations fell outside the theoretical range -1 to 1 
and also cases of negative heritability estimates, partic- 
ularly when the number of families were small i.e. f = 
25. However, the average estimates of these parameters 
were almost identical to the true parameters even with 
a sample size of 25 families with 15 individuals each. 
For a sample of 100 families, the parameter estimates, 
i.e. of heritability and genetic correlations, were found 
to fall consistently well within the theoretical bounds 
i.e., 0 < h2 s 1 and -1 < r, < 1. Similar to HAYES & 
HILL (1981), the replicates where genetic parameters 
fell outside the parameter space were included in 
further calculations. 

The plot of results for parameter set 8 (see Table 1) 
is shown in Figure 1. The number of families for this 
case are 50 and REVs of traits were in opposite rank 
order to the heritabilities. The Figure 1 consists of 
average (over 1000 replications) expected gain (equa- 
tion 5) for two different procedures, i.e., kR and yR, 
over full range of k and y. It can be seen from this 
figure that maximum average expected gains are 0.3018 
(at k = 0.88) and 0.2947 (at y = 0.56) for kR and yR 
procedures, respectively. The optimal genetic gain (7) 

Figure 1. Average (over 1000 replications) expected gain 
(equation 5 )  for two index selection procedures kR  ( - ) 
and y R ( - - - ) , f = 5 0 , n = 1 5 , s e t 8 , R E V = 3 , 2 , 1 .  y = l - k .  



for this case was 0.3527. Thus, the efficiencies are 85.6 
and 83.5 % for kR and yR procedures, respectively. For 
the procedure, yN, the fixed yvalue for a sample of 50 
families with 16 individuals and three traits, is 0.3 
(HAYES & HILL 1981). The value of average expected 
gain corresponding to y = 0.3 is 0.2758 giving effi- 
ciency of the prccedure, yN, as 78.2 5%. The efficien- 
cies of other two procedures (k = 0 and k = 1) were also 
calculated in this way. 

The simulation results regarding best fixed k values 
and efficiencies of different index selection methods are 
given in Tables 2 to 6. The values of k that maximised 
the average expected gain for various sample situations, 
are given in Table 2. These values were averaged over 
all parameter sets given in Table 1 .  The lower k values 
were required for small sample size. The overall best k 
values were 0.65, 0.75, 0.84 and 0.91 for a sample of 
25, 50, 100 and 200 families, respectively. This indi- 
cates that sample estimates with small number of 
families are less reliable. Thus, more weight should be 
given to REVS to overcome the effects of higher 
sampling bias associated with small sample size. As the 
sample size increases to 200 families, the estimates are 
less affected by sampling errors as is evident from 
higher k value (0.91) required for regressing the least- 
square index weights towards the REVS. The extent of 

Table 2. Average values ( which maximises the 
expectation of genetic gain) of k for different sample sizes. 
Averaged over all parameter sets in Table 1. 

No. of 
farn~hes 

. - 

25 
50 
10 
200 

Overall 

Number of traits 
-- Overall 

2 3 4 
- -- - - -- 

0 74 0 63 0 58 0 65 
0 79 0 76 0 70 0 75 
0 87 0 84 0 81 0 84 
0 93 0 91 0 90 0 91 

0 83 0 78 0 75 
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sampling errors also increased with increase in number 
of traits included in selection index. For a sample of 25 
families, the optimum k values ranged from 0.58 to 
0.74 depending upon the number of traits included in 
index. Thus sampling errors are more important with 
more traits in an index. However, for a large sample 
size of 200 families, the number of traits had little 
impact on the best fixed k values. 

The relative efficiencies of various index procedures 
for varying sample sizes are given in Table 3. The % 
efficiencies presented in this table are averaged over all 
parameter sets with zero environmental correlations. 
For the procedure kN. the fixed k values were taken 
from Table 2 and the efficiency corresponding to the 
fixed k values were calculated for this procedure. The 
relative efficiency of k = 1 varied from 70.9 to 95.3 % 
increasing with number of families whereas the effi- 
ciency of k = 0 was constant at 82.9 % as sample 
information contributes nothing in this procedure of 
index selection. The procedure k = 0 is better than k = 
1 only with small sample sizes. The yR procedure was 
found to be about 2 to 3 % more efficient than yN 
across all sample sizes. The slightly lower relative 
efficiency of yN as compared to yR is because yR 
represents the maximum point on the plot of average 
expected gain (as shown in Figure 1). The efficiency of 
the kR procedure was higher than for the other proce- 
dures. Tbe procedure kN was found to be less efficient 
than kR and yR but its efficiency is higher compared to 

YN. 
The results of the effect of number of traits on the 

efficiency of different procedures are given in Table 4. 
As the number of trait increases, the efficiency of all 
procedures also decreases. The rate of declining effi- 
ciency is lowest fork = 0 whereas highest decline was 
observed for k = 1. The magnitude of the relative 
efficiency advantage of the procedure kR over yR 
declines as the number of trait increases but its superi- 
ority is maintained throughout. 

The relative efficiency of various procedures was 
also evaluated for different economic weights and 

Table 3. Average efficieny ( 9 6 )  of different index procedures for different sample sizes. Averaged over parameter sets with 
zero enviromental correlations. 

No, of 
families 

k=O k =  1 
YR (Base index) (LS index) 

0 A R B O R A  P U B L I S H E R S  43 



S.KUILIHK ETAL.  : IMPACT OF ERRORS OF ESTIMATING MULTIVARIATE GENETIC PARAMETERS 

Table 4. Average efficieny (%) of different index procedures for different number of traits. Averaged over parameter sets 
with zero mviro~nental correlations. 

Table 5. Average efficiency (%) of different index procedures for different relatioship between economic weights and 
heritabilites. Averaged over parameter sets with zero environmental correlations. 

Economic weights: heritabilites = (1) Economic weights are equal for all traits; (2) Economic weights and heritabilites are in same 
order: (3) Economic weights and heritabilites are in opposite order 

Table 6. Average efficiency (%) of different index procedures for different number of traits. Averaged over parameter 
sets with non-zero environmental correlations. 

heritability relationships. Average relative efficiencies lites. Thc loss in efficiency. when REVS and hcrita- 
for this part of analysis are given in Table 5. The bilites are in opposite order, is least for kR. Also, the 
efficiency was higher, for all procedures, when eco- magnitude of higher relative efficiency of kR is maxi- 
nomic weights were in the same rank order as heritabi- mum when there is opposite relationship between 



REVS and heritabilites while it is minimum whenREVs 
and heritabilites are in the same order. As the procedure 
kR regressed the estimated index coefficients towards 
REVS, therefore, loss in efficiency is lower as com- 
pared to other procedures. 

Prompted by the results in Table 5, it was decided to 
compare the efficiency of various procedures in the 
situation where all the index traits have low heri- 
tabilites. For this purpose parameter sets 4, 8 and 12 
(see Table 1) were chosen. When economic traits and 
heritabilities are in opposite rank order, the average 
efficiency of kR was 5.5 and 2.3 % higher than yR with 
a sample size of 25 and 50 families, respectively. 

As mentioned earlier, this study was also designed 
to examine the impact of non-zero environmental 
correlations on the relative efficiencies of various 
procedures. The parameter sets 13 to 16 given in Table 
1 were used for this part of analysis. The results for 3 
and 4 traits-index are shown in Table 6. It shows that 
the procedure kR has an advantage over all other 
procedures. One interesting result clearly apparent by 
comparing Table 4 and Table 6 is that the difference in 
the relative efficiency of procedure k = 0 with others 
has reduced dramatically in Table 6. Interestingly, k = 
0 procedures have shown slightly higher relative 
efficiency as compared to k = 1 even with a sample size 
of 100 families and 4 traits-index. 

DISCUSSION 

The present study assumes a balanced structure of half- 
sib families. The effect of sampling errors on the 
efficiency of index selection, was evaluated using 
ANOVA estimates of genetic parameters. Different 
methods of moditying the parameter estimates to 
increase their reliability, have been proposed in the 
past. HAYES & HILL (1981) pointed out the possibility 
of modifying the index weights themselves which has 
some analogies with the technique of ridge regression 
(HOERL & KENNARD 1970). The proposed method is a 
form of index which takes into account the REVS 
which are assumed to be known precisely. This method 
lowers the chances of reducing the efficiency of index 
selection when the breeder is not confident about the 
reliability ofparameter estimates. The proposed method 
is also an intermediate solution between the two ex- 
treme situations, i.e. LS index and 'base index' and 
maximises the expected genetic gain. This method is 
similar, although methodologically different, to that of 
HAYES & HILL (1981). The expectation of response 
that would be actually achieved, for evaluating the 
efficacy of the different index selection procedures 
used in this study, should be theoretically similar to 

those from maximising the correlation between true and 
estimated aggregate genotype. The latter criteria have 
been used in some studies (e.g., ESSL 1991, VERRYN 
1994). 

Effect of sample size and genetic parameters 

The maximum genetic gain was obtained with k < 1 
when sample estimates of variance components were 
used. The optimum value of k was found to depend on 
number of traits, size of experiment and heritabilities. 
With a two-trait index, the magnitude of sampling 
errors is comparatively less and thus highest expected 
gain was obtained with k values closer to 1. With low 
heritabilities of index traits, the maximum gain was 
obtained at comparatively low k values. These findings 
parallel those obtained in other studies (e.g. HAYES & 
HILL 1981, ESSL 1991) with large yvalues. The genetic 
parameters were found to have influence on the opti- 
mum value of bending factor in these studies. The logic 
behind the yN (i.e., select bending factor on the basis of 
sample size alone) of HAYES & HILL (1981) was to 
operate more generally when all roots are positive and 
genetic parameters are unknown. The relative sub- 
optimality of procedure yN compared to yR in present 
study may be because of the effect of genetic parame- 
ters on optimum y. 

The calculation of expectation of response in (5) 
requires that the true parameters be known. However, 
the improvement of the efficiency of different index 
selection procedures can only be calculated in Monte 
Carlo simulation studies (MEYER & HILL 1983). By 
substituting P" and 6 in place of P and G in (5), a 
roughly linear decline (results not shown) in  with 
decreasing k was obtained. It indicates that the pattern 
of predicted gains gives no real guidance about opti- 
mum k, unless perhaps one is dealing with large matri- 
ces and obviously unstable LS index solution which 
shows clear parallels with multiple regressions. 

Effect of environmental correlations 

The average expected genetic gain for kR procedure 
was much higher as compared to unmodified index 
selection (i.e. at k = 1). The difference in the relative 
efficiency of kR and k = 1 procedures fall drastically 
when non-zero environmental correlations were taken 
into account (Table 6). One of the probable reasons for 
this may be that results in Table 6 are based on parame- 
ters set where heritabilities of traits are marginally 
higher which resulted in the higher relative efficiency 
of k = 1. E s s ~  (1991) also looked briefly into the aspect 
of non-zero environmental correlations. Further investi- 
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gation is required to study the effect of various degrees 
of environmental correlations on relative efficiency of 
different index selection procedures. 

Effect of different economic weights 

Precise knowledge of REVS was assumed in this study. 
However, the choice of appropriate economic weights 
can itself be crucial, particularly when adverse genetic 
correlations are involved. The economic end-product 
value of observed traits is often difficult to evaluate, 
especially in tree breeding programmes that involve 
long generation intervals and uncertain relationships 
between biological traits and net end-product values. 
The proposed method proved to be relatively more 
efficient, under various scenarios, as compared to other 
procedures considered in this study (Table 4). Its 
efficiency was much higher particularly when the index 
involves low-heritabilities traits with REVS in opposite 
rank order to heritabilities. The results also shows that 
the proposed method is more efficient than other 
procedures even when equal REVS have been assigned 
to different traits. The efficiency of yR was, however, 
almost identical to that of kR when sample size was 
more than 50 families. 

In this study the efficacy of the proposed method 
was tested for MANOVA estimatim of genetic param- 
eters in a balanced half-sib family structure. Further 
investigation is required for establishing the efficacy of 
this method for other genetic parameter estimation 
methods (like REML) and selection methods (different 
sources of information: ancestors, individual and 
progeny). This study does not rule out the possibility 
that better methods of modifying the parameter esti- 
mates exist. Our results offer a simple but very effec- 
tive procedure which can be further explored. 
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