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ABSTRACT

This paper reports the construction of a high-density Random Amplified Polymorphic DNA (RAPD) map in
Pinus sylvestris (L.). Genomic DNA of haploid megagametophytes from seeds originating from a single tree were
amplified with 220 random decamer oligonucleotide primers by the polymerase chain reaction. Two hundred
and ninety-eight RAPDs with fragment sizes that ranged between 250 and 2500 base pairs were found
segregating at 104 random decamer oligonucleotide primers. Of these, 16 (5%) were excluded from mapping
because they did not conform to 1:1 Mendelian segregation. Two hundred and sixty-one of the remaining 282
RAPDs formed 14 linkage groups for a total distance of 2,638.6 ¢cM. Four of the 21 RAPDs we did not map
could not be placed with the main linkage groups. The remaining 17 RAPDs could be mapped, but they were
loosely linked at recombinant frequency near 50% to warrant serious consideration. The availability of a genetic
linkage map in Pinus sylvestris with a large number of RAPD markers should facilitate the identification of
quantitative trait loci, contribute towards marker-assisted selection and allow the choice of unlinked RAPD

markers for population genetic studies.
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INTRODUCTION

Molecular genetic linkage maps of conifers have been
constructed only recently (NEALE & WILLIAMS 1991;
TULSIERAM et al. 1992; NELSON ef al. 1993; AHUJA et
al. 1994; BINELLI & BUCCI 1994). Some of the earlier
genetic maps in conifers related to linkage relationships
among a small number of isozyme loci (e.g., GURIES et
al. 1978; ADAMS & JOLY 1980; EKERT er al. 1981,
NEALE & ADAMS 1981; EL-KASSABY et al. 1982; KING
& DANCIK 1983; CHELIAK & PITEL 1985; MUONA et al.
1987; NA'EEM et al. 1993). They showed that linkage
blocks in conifers were highly conserved and large
chromosomal rearrangements likely did not occur
during evolution (CONKLE 1981). Recently, AHUJA et
al. (1994) showed that nearly all Pinus taeda probes
cross-hybridized to DNA from species within the genus
Pinus. Consequently, the genetic linkage map of a given
conifer probably could be extrapolated to that of related
species. NEALE and WILLIAMS (1991) estimated that the
genomes of Pinus species are around 2,500 cM each. A
Random Amplified Polymorphic DNA (RAPD) map of
approximately 2,160 cM accounted for 64-75% of the
total Pinus elliottii genome (NELSON et al. 1993) and in
Pinus taeda, 191 RAPDs were mapped to 12 linkage
groups with a distance of 1,687 cM (O'MALLEY et al.
unpublished data). BINELLI and BUCCI (1994) placed
185 RAPDs to 17 major linkage groups covering 3,584
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cM in Picea abies. Hence, the size of conifer genome,
in terms of map units, is not expected to be much
greater than that of the crop species (MCCOUCH et al.
1988; TANKSLEY et al. 1992; VELDBOOM et al. 1994).

The number of genes governing economic traits,
their spatial organizations and the degree they vary
among different trees, populations and species remain
largely unknown in conifers. Genomic maps will enable
us to identify and locate these genes, thus, assist tree
breeders select seedlings with combinations of desirable
genes. This type of plant selection, known as marker
assisted selection (MAS), has the potential to become
one of the most useful tree breeding tools ever devel-
oped. Genomic maps will also allow the choice of
unlinked markers, important to unbiased estimate of
genetic parameters for natural populations,

We report the construction of molecular genetic
linkage map of Pinus sylvestris (L.} using RAPD
markers that rely on the amplification of specific DNA
fragments from total genomic DNA. The advantages of
RAPD markers to mapping over the Restriction Frag-
ment Length Polymorphism DNA markers are their
rapidity, simplicity and the need for very small amounts
of genomic DNA (INNIS et al. 1990). The availability of
a large number of RAPD markers should facilitate the
identification of quantitative trait loci, contribute
towards marker-assisted selection and allow the choice
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of unlinked RAPD markers for population genetic
studies.

MATERIALS AND METHODS
Plant Materials

Open-pollinated seeds from clone 49-2, which origi-
nated from the Eiche’s population trial in Sweden, were
collected from the clonal archive at Bogesund near
Stockholm during 1993. Screening of RAPD markers
was carried out on genomic DNA extracted from each
of 70 megagametophytes.

Laboratory Protocols

Genomic DNA were isolated from individual megaga-
metophyte of germinating seed by a CTAB procedure
modified from DOYLE and DOYLE (1990). Proteinase K
(1 mg'ml™") was added before incubation at 60 °C. This
method yielded between 1,000-2,000 ng of DNA per
megagametophyte. Our tests indicated that the optimal
amount of DNA template used for RAPD PCR reaction
was between 1-2 ng. RAPD PCR reactions were
assembled in 96-well microtiter plates using random
decamer oligonucleotide primers purchased from
Operon Technologies (Alameda CA).

RAPD PCR reaction volume was 13 pl in 96-well
plates. Each well contained 1.3 ul Promega PCR buffer,
1.06 ul of a 10 mM dNTP for each nucleotide, 2 ng
template DNA in 3 pl of double-distilled water, 15 ng
of a 10-mer from the collections of random decamer
oligonucleotide primers suspended in 1.5 pl of dou-
ble-distilled water, 0.7 unit of Tag DNA polymerase
and water to a total volume of 13 ul. We used Tag
DNA polymerase purchased from Promega in 209 of
the 222 RAPD PCR reactions. The remaining 13 RAPD
PCR reactions, we used Tag DNA polymerase pur-
chased from Dynozyme. RAPD PCR reactions were
carried out using a MJ Research 96-well thermocycler
for 41 cycles consisting of denaturation for 1 minute at
92 °C, primer annealing for 1 minute at 37 °C and
primer extension for 2 minutes at 72 °C. RAPD prod-
ucts were subjected to electrophoresis on 1.5% (w/ v)
agarose gels in tris-borate EDTA buffer at 100 V for 4
h. Gels were stained in 0.5 pg'ul™ ethidium bromide
solution and photographed under illumination with UV
light.

Primer Selection and RAPD Analysis
Two hundred and twenty-two random decamer oligonu-
cleotide primers that consistently revealed scorable and

reproducible RAPD fragments over several independent
runs were chosen for this mapping study. Random
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primers could be used individually and in pairwise
combination to generate new genomic fingerprints
(WELSH & MCCLELLAND 1991). We studied five
pairwise combination of eight random decamer oligonu-
cleotide primers and found that less than half of the
amplified fragments were the same as those produced
by one of the two primers alone, while the other half of
the amplified fragments were new variants. Thus, a few
random decamer oligonucleotide primers could poten-
tially be used in a large number of single and pairwise
combinations, each producing distinct PCR fingerprints.

Most RAPD markers are dominant but in haploid
megagametophytes there could be either presence "+",
or absence " —" of a band (fragment). Molecular weights
for the RAPD fragments were determined by compari-
son with the molecular weight of a reference marker
produced by a standard 1 kb-ladder from BRL/Gibco.
We have used standard nomenclature to assign different
RAPD fragment with primers identity and fragment size
that ranged between 250-2,500 base pairs.

Statistical Methods

Chi-square analysis of segregating RAPD markers at the
0.05 significance level tested the goodness of fitto a 1:1
Mendelian ratio. RAPD markers that did not conform to
I:1 Mendelian segregation were excluded from the
linkage analysis. The assignment of RAPD markers to
linkage groups used MAPMAKER Macintosh V2.0
(LANDER et al. 1987), an interactive computer package
for constructing primary genetic linkage maps. Raw
data was prepared as an F2 backcross data file for the
MAPMAKER program. We first performed a two-point
analysis of our entire data set with a LOD score of at
least 3.0 and a recombination fraction of at most 0.40 to
assign RAPD markers to possible linkage groups. Then,
we used three-point analysis to determine the likely
orders of these linkage groups. Finally, we used multi-
point analysis to resolve any discrepancies not resolved
by the three-point analysis and to display the maximum
likelihood map distances for the indicated map orders.

RESULTS AND DISCUSSION

Two hundred and ninety-eight RAPDs with fragment
sizes that ranged between 250 and 2,500 base pairs
were found segregating at 104 of 222 random decamer
oligonucleotide primers. Figs.1 and 2 are representative
samples of the stained gels from screening and mapping
of RAPDs with different random decamer oligonucleo-
tide primers on genomic DNA extracted from mega-
gametophytes. Fig.1 shows two fragments, 1 and 2, for
primer AO1. In Fig. 2 there are six fragments (1, 2, 3, 4,
5 and 6) for primer G13.
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Figure 1 Visualisation of RAPDs produced by the 10-base oligonucleotide primer AO1. In lane
1, molecular weight size standard, 1kb ladder. Lanes 2-32 are megagametophyte template DNAs
from clones 49-2 in the Eiche trial. Two RAPD fragments are designated by A01/1 and A01/2.
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G13/27
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Figure 2 Visualisation of RAPDs produced by the 10-base oligonucleotide primer G13. Six

RAPD fragments are designated by G13/1-6

Of the 298 segregating RAPDs, 16 (5%) were
excluded from mapping because they did not conform
to 1:1 Mendelian segregation. The segregation distor-
tion was random with respect to band absence or
presence. Two hundred and sixty-one of the remaining
282 RAPDs were mapped to 14 linkage groups. Four of
the 21 RAPDs we did not map could not be placed with
the main linkage groups. The remaining 17 RAPDs
could be mapped, but they were loosely linked at
recombinant frequency near 50% to warrant serious
consideration.

Figure 3 presents the genetic linkage map of Pinus
sylvestris in clone 49-2 generated from multipoint
analysis. The total length of the map is 2,638.6 cM,
with an average distance of 10.1 ¢cM between RAPD
markers. This supports the findings that genomes of
Pinus species are around 2,500 ¢cM each (NEALE &
WILLIAMS 1991; NELSON et al. 1993). In conifers, 1 cM
could be 4,000 kilobases or more (NEALE & WILLIAMS
1991) whereas in Arabidopsis, 1 cM is only about 140
kilobases (CHANG et al. 1988). This is not unexpected
since the DNA contents of conifer nuclei are among the
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largest of higher plants. For example, DNA contents in
Pinus are approximately 3.7 times that of maize, 5.2
times that of lettuce, 15 times that of tomato and 110
times that of Arabidopsis (NEALE & WILLIAMS 1991).

It is conceivable that the reported genome has not
yet been saturated with RAPD markers because the
number of linkage groups at 14 is greater than 12, the
number of haploid chromosomes of the Pinus. Several
of the smaller linkage groups probably will converge or
join with the larger linkage groups with analysis of
additional RAPD markers. In some parts of the linkage
group there is a high density of RAPD markers. Likely,
this is because the map distance which is based on
calculation of recombination rate, is not constant over
the entire genome. Inversions, or other chromosomal
variations that differentiate species, are known to cause
regional suppression of meiotic recombination and
hence, clustering of markers on linkage map (BURNHAM
1962). Occurrence along the chromosome of sequences
that are hot spots for recombination may also explain
the heterogeneities in RAPD marker densities along the
map, which is assumed independent of major cytologi
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Figure 3 Linkage map for Pinus sylvestris based on 261 RAPD markers. Marker names containing the primer ID and molecular
weights for RAPD fragments are given to the right of the linkage groups and recombination frequency (in parenthesis) and
Haldane centimorgan distances (HALDANE 1919) are given to the left. Marker names contajning a mixture of two primers are
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Figure 3 (continued)
designated with two primer ID on the right-hand side of the linkage groups. The map for linkage group 2 is scaled at 20 ¢cM per
cm while the remaining 13 linkage groups were mapped at 15 ¢cM per cm.
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cal features like the centromeres, telomeres and hetero-
chromatin (LINDAHL 1991). The later explanation is
suggested by data from yeast and mice where certain
sequences enhanced recombination by a factor of 5 or
more (COLEMAN et al. 1986; LINDAHL 1991). There are
some reports concerning recombination differences as
a result of influence by different genetic background or
age (ANDERSSON & SANDBERG 1983).

The number of map units per linkage group may
correspond to the cytological length of chromosomes in
Pinus sylvestris. In tomato and potato genomes, TANK-
SLEY et al. (1992) showed that map units per chromo-
some tightly correlated with the number of markers per
chromosome and pachytene length (r = 0.84 and 0.89,
respectively).

Gaps have been found in some regions of our
linkage map. Some of the longest gaps correspond to
47.5 ¢cM distance or a 30.6 % recombination and 44 .4
cM or 29.4 % recombination on linkage group 2, and
44.9 ¢M or 29.6 % recombination on linkage group 1.
There is a total of 18 gaps that exceed 25 cM distance
or 20 % recombination frequency (Figure 3). Mapping
additional RAPD markers may eventually fill the larger
gaps in the map for Pinus sylvestris. It should also be
stressed that estimates of map distances are very sensi-
tive to sampling errors. Thus, the 70 megagametophytes
analysed in this study probably did not represent a
reliable sample. The small size of the sampled
megagametophytes might be one reason why we could
not established with absolute certainly the orders of the
RAPD markers at the ends for some of the linkage
groups.

One important application of molecular maps is to
improve our understanding of genomic organization
(WELSH & MCCLELLAND 1990). For example, it is of
interest to compare the consistency of the RAPD
linkage map based on recombination frequencies, as is
done in this study, with the RAPD maps of other
individuals within a population and species. This kind
of comparison will give us information about how the
genome of Pinus sylvestris is organised. It is also
informative to identify the presence of chromosomal
rearrangement such as inversions, duplications, translo-
cations and so on by comparing maps of different tree
species (LUNDIN 1993). Phylogenetically related forest
tree species may have conserved gene orders. When
many putative RAPD loci are assigned to each of
several linkage groups, as in this study, the genetic
linkage map can infer about chromosome rearrange-
ment, the order of loci, and the recombination fre-
quency between adjacent loci in different species. If the
loci are linked in more than one species this suggests
the presence of a conserved chromosomal segment.
First, patterns of conserved regions can address the
evolutionary history of chromosomes and thus, shed
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some light on the genomic organization of ancestral
species (LUNDIN 1993). Second, conserved segments
are extremely useful when seeking for candidate genes
based on gene arrangements in other species. Whenever
a trait is localised to a particular chromosomal region,
the map can be compared with those of the other
organisms (JOHANSSON et al. 1992).

Quantitative traits in forest trees are assumed to be
under the control of many genes each with small effect.
Recent advances in molecular mapping allow us to test
if such assumptions are correct. In F, progeny originat-
ing from crosses between Populus trichocarpa and
Populus deltoides, BRADSHAW et al. (1994) used segre-
gants for a variety of phenotypic traits to construct a
linkage map and for mapping quantitative trait loci
(QTL). The Populus genome was estimated to have a
genetic length of 2600 ¢cM and 4 QTL controlled 86%
of the genetic variance and 49% of phenotypic variance
in two-year field stem volume growth. In Eucalyptus
grandis, a genomic region that simultaneously increased
volume growth and wood specific gravity was identi-
fied, suggesting pleiotropic gene action (GRATTAPAGLIA
1994). A major dominant gene for resistance to Cronar-
tium ribicola in Pinus lambertiana was rapidly mapped
(DEVEY 1994) using RAPDs and bulk segregant analy-
sis advanced by MICHELMORE et al. (1991).

The map developed by us has RAPD markers, on
average, every 10.1 cM. This density of RAPDs makes
it very likely that any target gene will be located within
a few map units of at least one of the RAPD marker.
Obvious quantitative traits to be analyzed for future
mapping study of Pinus sylvestris will include wood
density, fibre quality, and adaptive traits like bud
flushing, bud set, bud dormancy, frost hardiness and
growth capacity. Once a QTL has been detected, the
linkage information can be applied in breeding using
marker assisted selection (TUSKAN 1991; TAUER et al.
1992; WILLIAMS & NEALE 1992). Furthermore, follow-
ing detection of a QTL, the next phase of gene identifi-
cation and isolating of an unknown gene product via
genetic linkage map will start (ORKIN 1986).
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