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ABSTRACT 

A set of programs which can be used to simulate a population with defined genetic structure and some 
reproduction processes is described. Distribution of the number of alleles at individual loci is simulated based 
on the modified Poisson distribution and serves for the generation of genotypes. Spatial location of genotypes 
can be assigned following 5 different distribution patterns. Progeny can be generated either under conditions of 
panmixia. or under spatial restrictions in mating, depending one of three pollen dispersion functions. Male and 
female gametic haplotypes are joined at random independently at each locus. Progeny individuals can be 
spatially distributed using the same dispersion functions as for pollen with different parameters. The programs 
are written in Turbo Basic and available on the Internet. 
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INTRODUCTION 

The genetic structure of a population is a result of a 
complex of natural evolutionary factors as well as 
anthropic influences. An exact determination of factors, 
which have substantially contributed to forming of the 
present genetic architecture of a population, is 
frequently problematic in experimental research. In the 
case of short-lived organisms, the results of various 
evolutionary forces on population genetic structure can 
be assessed directly from experiments with living 
material in artificial conditions. This approach, 
however, is practically excluded in forest trees, where 
generation lengths are in the order of several tens of 
years. Therefore, with the exception of some types of 
selection, which can be studied under artificial 
conditions (BERGMANN & SCHOLZ 1989; GEBUREK & 
SCHOLZ 1985), investigating the effects of most 
management practices on genetic structure of forest 
stands, as well as the effects of natural processes are 
practically impossible. Mathematical modelling and 
simulation of these processes seems to be an 
appropriate substitution. Most of the published models 
describe changes in the population allelic structure in 
one locus (CUGUEN 1986). This paper describes a set of 
programs for creating a set of multilocus genotypes with 
selected characteristics representing adult population 
and for simulating of reproduction process to produce 
one or more offspring generations. 

MATHEMATICAL MODELS AND SIMULATION 
METHODS 

Simulation of maternal population 

The program creates a population with Hardy-Weinberg 
genotype proportions at each locus, with a given mean 
effective number of alleles (CROW & KIMURA 1970; 

- 

n ,  = ( I  1 ) I n )  andlor mean expected 
/ = I  i = 1  

" I  

heterozygosity (q = ( I  - 2 4,;) 1 n,),  and with 
/ = I  I =  1 

a given mean number of alleles per locus, using the 
Monte Carlo method (q,, IS the frequency of the i-th 
allele at the j-th locus, rill is the number of alleles at j-th 

1 

locus, n, is the number of loci). 
The distribution of alleles at individual loci was 

used as a primary characteristic of the population, and 
as a basis of all further calculations. The modified 
Poisson distribution is used for its simulation. Published 
studies employing extensive sets of isozyme loci on 
several tree species (Abies sp. - JACOBS et al. ,  1984; 
Larix lnricina - CHELIAK et al. 1988; P. brutia - 
CONKLE et nl. 1988) were used to prove the suitability 
of this distribution. The algorithm following DAVIES 
(1971) was applied for the simulation of the actual 
number of alleles at the j-th locus n : uniformly 
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distributed random numbers u, (u, E (0, 1)) are generated 
as long as they match the inequality: 

(ncl - 1) is then a random integer variable with 
I 

Poisson distribution. Because the Poisson distribution 
starts from zero, and the number of alleles must be 
greater or equal to 1 ,  this random integer must be 
increased by 1. < is the mean number of alleles per 

locus (input parameter). 
Effective numbers of alleles at individual loci are 

calculated on the basis of the distribution simulated in 
the preceding step by multiplying the actual number of 
alleles by a random number u. The mean effective 
number of alleles (<) is an input parameter. To obey 

the following conditions: n 2 1; neJ s nnl, and 
<J 

n = 1 if and only if no = 1 ,  effective number of 
'1 1 

alleles at the j-th locus n is simulated as 

Because the average of simulated effective numbers of 
alleles should approximate the mean effective number 

- 
of alleles given as input (x n In, = n e ;  n, is the 

number of loci), 14 should be a random number from the 
interval (0, 1 )  with an expectation k (the ratio 

- 

n - 1  
k = L  - is determined by the input data). 

- 

Therefore, u is simulated as a random number 
uniformly distributed in the intervals (0, k: and (k, 1); 
selected at random from the first interval at frequency 
proportionate to (1 - k) and from the second interval at 
frequency proportionate to k to ensure E(u) = k.  

Allelic frequencies q,,,, (m-th allele at the j-th locus) 
were simulated based on the effective number of alleles 

under conditions: 9 qf = 1 and 2 q,i = line , as a 

number chosen at random within the limits given by: 

form = 1 to (n - 2) .  The last two allelic frequencies 
('I 

( n ,  

(m = n - 1 ,  n ) are calculated as follows: 
Lif "1 

( n  - 1 )  --C y,; ( I - C  y,, 

For more details on derivation of the formulae, see 
Appendix I. 

As there is a functional relationship between the 
effective number of alleles and expected heterozygosity 
(he ) at a single locus (n = 141 - he)), simulation is 

J '1 1 

f \ , - [.I r~ j : ,?,I 

based on effective numbers of alleles even if the mean 
expected heterozygosity is used as input characteristic. 
However, mean heterozygosity corresponds to the 
harmonic mean of effective numbers of alleles, not to 
the arithmetic mean, so that the values of effective 
number of alleles at individual loci must be adjusted. 

Subsequently, genotypes are generated from 
obtained allelic frequencies. Maternal and paternal 
gametes join at random, the model in the present 
version does not consider the linkage of loci. The 
alleles are chosen at random proportionately to allelic 
frequencies. 

Simulation of the reproduction process 

The program makes it possible to generate progeny 
either under the conditions of panmixia (probability of 
mating is the same for any pair of individuals) or 
dependent on the distance between parental individuals. 
All mating situations from full allogamy to full 
autogamy can be simulated. Mother individual is chosen 
at random or by the user. The distance to the pollen 
parent d is then generated based on one of three pollen 
dispersion functions depending on the parameter of 
pollen flow P(input parameter). Pollen density h andlor 
mating probability between two individuals 4 are 
generated as random uniformly distributed numbers (u), 
the corresponding distance is calculated based on the 
dispersion function. The coordinates of the paternal 
individual are determined on the basis of the simulated 
distance d and a random chosen azimuth: 
,xPfil= x ,,,, + d . sin (2n . u), y p:,,, = y ,,,,, + d . cos (2n . u) .  
The individual closest to the point [x ,,,,,, J;,,,] is then 
chosen as the pollen parent. The pollen dispersion 
functions are following ones: 



A. Gaussian curve; the distance d from the maternal 
individual to the paternal one is a normally distributed 
random variate with the mean 0 and standard deviation ,b . d 
( d  is the average distance between individuals). A 
random variate v (v E N(0, l  )) is generated using the 
formula following DAVIES ( 1  97 1 ): 

(u, is uniformly distributed random number from (0, 1,). 
The distance between mates can be then generated as 
follows: 

d = I v I . P . d  [61 

B. Dispersion function following ADAM & BIRKES 
(1991): 

,-Pd, 

&i) = - 
k e - P d 4  [7 I 

where &i) is the relative mating success of the i-th male 
partner at the distance d, from the mother tree, n is the 
number of all possible pollen parents. An equal pollen 

fertility of all males is assumed. Term e-Od' is 
calculated for each individual (potential male) and the 
male is selected at random proportionately to its mating 
success. For seed dispersal, it is assumed that the seed 
density h ( d )  decreases exponentially with the distance 
(h(d) = e-Pd), based on which the distance can be 
slniulated as follows: 

d = -log 111p 

C. Pollen denslty h(d) is ind~rectly proportional to 
distance d; h(d) E (0, I):  

h(d) = PI@ + d )  191 

Thus, pollen dispersion can be simulated as follows: 

( u  is uniformly distributed random number from (0, 1 :). 
The value of the pollen dispersion parameter P 

depends on the selected function and makes it possible 
to simulate also the infinite pollen flow (which is 
equivalent to full panmixia). In the first two variants, 
the appropriate value of ,L3 can be chosen based on the 
distance from maternal tree, in which 50 O/o of mating 
events occur. Because the last dispersion function has 

a divergent improper integral ( 1 h (d)  - a). pollen 
d=O 

flow parameter ,8 can be chosen based on the distance 

in which the actual pollen density decreases to 50 % of 
the maximum. 

Seed dispersal can be simulated using the same 
functions changing the parameter P. 

DESCRIPTION O F  SIMULATION PROGRAMS 

SIM1: The program simulates allelic frequencies of the 
maternal population. Input data comprise number of 
loci, required mean number of alleles, and required 
mean effective number of alleles and/or mean expected 
heterozygosity. Output contains the vector of number of 
alleles in individual loci and the matrix of allelic 
frequencies. 
SIM2: The program simulates spatial coordinates for a 
given number of individuals. It allows to choose among 
5 types of distribution patterns: regular square network, 
regular triangle network, irregular random distribution, 
irregular square network and irregular groupwise 
distribution. Number of individuals, distribution type 
and average distance between neighbors are required 
for all distribution patterns. In addition, minimum 
distance between neighboring individuals must be 
supplied in case of the irregular square network, and the 
number and relative compactness of groups on a scale 
from 0 (random distribution) to 10 (most compact 
groups) must be specified for the groupwise 
distribution. Output is represented by the set of 
coordinates in a two-dimensional space. 
SIM3: The program creates a population with defined 
parameters. It requires allelic frequencies (created by 
the program SIM1, or from a real population). 
Genotypes are generated as random combinations of 
alleles at each locus. The current version does not allow 
to consider the linkage. Spatial coordinates (e.g., 
created by SIM2) can be assigned at random to the 
individuals. 
SIM4: This program generates the progeny genotypes 
under the conditions of panmixia (probability of uniting 
of gametes is equal for any pair of individuals). Female 
and male gametes are generated by a random choice of 
one allele at each locus from the maternal andlor 
paternal diploid genotype and combined into progeny 
genotypes. The input file comprises the set of 
individuals (genotypes) of the parental population, 
while the output contains the set of progeny genotypes. 
SIM5: The program simulates the creation of progeny 
in the case of limited pollen flow. Any of the dispersion 
functions presented in section 2.2 can be used for 
simulation. A graphic presentation of the dispersion 
diagram displayed on the monitor allows to choose the 
proper input parameters. Spatial coordinates can be 
assigned to the progeny genotypes using the same 
dispersion functions as in case of pollen flow. 
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Otherwise, input and output data files are the same as 
with the program SIM4. 

All the programs are written in the Turbo BASIC 
language. Executive as well as source (ASCII) files are 
available on anonymous ftp server vsld.tuzvo.sk in the 
directory /pub/incoming on Internet (compressed by 
pkzip; filename sim.zip), or can be requested by 
sending the diskette to the author. Source texts of all 
programs are supplied, so that further adaptations of 
these programs by the user are possible. All the 
programs can produce output files, which may be used 
directly for the BIOSYS-1 (SWOFFORD & SELANDER 
1981), the most frequently used program for the 
analysis of population genetic data. 

ACKNOWLEDGEMENT 

Author is grateful to Dr. Vladimir Vacek, Department 
of Mathematics, Technical University in Zvolen, for 
helpful comments and discussions. 

REFERENCES 

ADAMS, W.T. & BIRKES. D.S., 1991: Estimating mating 
parameters in forest tree populations. In: Biochemical 
markers in the population genetics of forest trees. (eds. 
S. Fineschi, M.E. Malvolti, F. Cannata & H.H. 
Hattemcr). p. 157-172. SPB Academic Publishing bv, 
The Hague. 

BERGMANN. F. & SCHOLZ. F., 1989: Sclection effects of air 
pollution in Norway spruce (Picea abies) populations. 
In: Genetic effects of air pollutants in forest tree 

populations. (eds. F. Scholz. H.-R. Gregorius & D. 
Rudin). p. 143-1 60. Springer-Verlag, Berlin - 
Heidelberg - New York. 

CHELIAK, W.M., WANG, J .  & PITEL, J.A.. 1988: Population 
structure and genic diversity in tamarack, Larix laricim 
(Du Roi K. Koch). Ca~mfinrl  Jour~lal qf Forest Research 
18(10):1318-1324. 

CONKLE. M.T.. SCHILLER. G. & GRUNWALD, C., 1988: 
Electrophoretic analysis of diversity and phylogeny of 
Pinus brutia and closely related taxa. Systematic Bo tan~ ,  
13(3):4l 1 4 2 4 .  

CROW, J.F. & KIMUKA, M., 1970: An Introduction to 
Population Genetics Theory. Harper and Row, New 
York. 

CUGUEN, J. ,  1986: Differentiation gknktique inter- et intra- 
population d'un arbre forestier ankmophile: le cas du 
hCtre. Thkse, UniversitC des Sciences et Techniques du 
Lan-guedoc, Montpcllier, 83+77 pp. 

DAVIESR.G. 1971 : Computer Programming in Quantitative 
Biology. Academic Press, London - New York, 492 pp. 

G E B U R E K ~ .  & SCHOLZ, F., 1985: ober Selcktionswirkungen 
bei Forstpflanzenpopulationen infolge von Luftverun- 
reinigungen. Forsmrchiv 56(6):234-238. 

JACOBS, B.F., WERTH. C.R. & GUTTMANN, S.I., 1984: Gcnelic 
relationships in Abies (fir) of eastern United States: an 
electrophoretic study. Canadian Jourlzal of' Botany 
62:609-616. 

SWOFFORD, D.L. & SELANDER, R.B., 1981: BIOSYS-I: a 
Fortran program for the comprehensive analysis of 
electrophoretic data in population genetics and 
systematics. Jowrial of Heredity 72:28 1-283. 

Appendix I 

Allele frequencle5 at each locus depend on the effective 
number of alleles 1 1 ,  and the actual number of alleles 

I 

rl . If there are two alleles at the j-th locus. then the 
(!I 

allele frequencies are function of the effective nunibel- 
7 

of alleles If 1 1 ,  = 1 1 2 i i , j ,  then for the t~cquency of 
! 

I I 

the first allele holds q,: + ( 1  - q l l ) 2 = ~  / I , (  . from 
I 

which the frequency q,, can be derived as: 
I 

whereas the frequency of the second allele is the 
complement to I .  

If the number of alleles 11 is higher than 2,  then 

the frequencies of the first (11 - 2) alleles are not 
( I f  

function of I?,, , nevertheless, they are limited by this 
I 

value. The frequency of the first allele is maximum, 
when the remaining ( 1 1  - 1) alleles are equally 

(1: 

represented. i.e. their frequency is 1 - q I 1 ,,I;,, 

11 - l 

Therefore, the upper limit of the frequency of the first 
simulated q,!  allele can be derived from: 



The same holds for the lower limit of the frequency of 
the first allele; the frequency reaches its minimum, 
when the remaining alleles are equally represented. 
Based on equation [12], the limits for the frequency of 
the first allele are given by: 

For the second, third etc. alleles, the frequency is 
limited also by frequencies of alleles which were 
simulated before. After simulating (m - I )  alleles, the 
number of alleles nil for the formula [13] is decreased 

I 

to [ H ( ~ ,  - (nz - I)] ,  remaining summary allele 

frequency 1 becomes 1 - yi, , and the inverse I:: j 

value of the effective number of alleles must be 
subtracted of the sum of squared frequencies of the first 

m -  l 

( m  - 1 )  alleles: 1 / ne - y,f. The generalized 
' 1 = 1  

formula then becomes: 

\I [n,, - (m - I)]' 
I 

Formula [4] can be derived from formula [1 11 using the 
same procedure. 
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